
Aniello Murano - Module Checking 1

Reasoning about Module Checking

Aniello Murano

Università di Napoli “Federico II”

Bolzano, Italy

July 2016

Short Version

Aniello Murano - Module Checking 2

Model Checking

❑ Let S be a finite-state system and P its desired behavior

◆S → labelled state-transition graph M

◆P → a temporal logic formula 

❑ We check whether S has the required behavior P by checking whether

M ⊨ 

Aniello Murano - Module Checking 3

Classes of Models
❑ Closed Systems

➢ Behavior is fully characterized by system state

❑ Open Systems

➢ Behavior depends on the interaction with the environment

➢ Open System Model: Labelled State-Transition Graph

➢ A solution for Open Finite-State Systems: Module Checking

[Kupferman, Vardi, Wolper 1996-2001]

It must be

“reactive”

Aniello Murano - Module Checking 4

Model checking
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

❑ A desired behavior:

“It is always possible to show an ad”

M: Welcome Choose

Withdraw

Show Ad

❑ M is a labeled-state transition graph modeling the machine

φ = GF Show Ad

Aniello Murano - Module Checking 5

Model checking
❑ Consider an ATM machine that

1. Displays a welcome screen

2. Makes an internal nondeterministic choice

3. Withdraws money or shows an advertisement (Ad)

❑ The machine is a closed system !

❑ A desired behavior:

“It is always possible to show an ad”

M: Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

Welcome Choose

Withdraw

Show Ad

T

M⊨φ iff T⊨φ

❑ M is a labeled-state transition graph modeling the machine

❑ T is an infinite tree obtained by unwinding M

φ = GF Show Ad

Aniello Murano - Module Checking 6

Open
system

Model checking an open system

❑ Consider the ATM machine as an open system:

1. Displays a welcome screen

2. Lets the environment choose to view an Ad or withdraw money

3. Performs the requested operation and restarts from 1

❑ The ATM can always eventually show an Ad iff

It may be impossible to show an ad!

T⊨G F Show Ad

M: Welcome Choose

Withdraw

Show Ad

Aniello Murano - Module Checking 7

Open
system

Model checking an open system

❑ Consider the ATM machine as an open system:

1. Displays a welcome screen

2. Lets the environment choose to view an Ad or withdraw money

3. Performs the requested operation and restarts from 1

M: Welcome Choose

Withdraw

Show Ad

❑ To model the ATM we need a Module: a labeled transition graph with a partition

into system and environment states

❑ Let T be the unwinding of M.

❑ Let Exec(M) be the set of all trees obtained by pruning in T sub-trees rooted in

successors of environment nodes (but one).

❑ M (reactively) satisfies φ iff φ holds in all trees of Exec(M).

s
s

s
e

M ⊨r φModule checking

Aniello Murano - Module Checking 8

Solving CTL/CTL* Module Checking

❑ First, observe that

◆M ⊨rϕ implies M ⊨ ϕ, while the convers may not be true.

◆M ⊭r ϕ iff there is a tree T in Exec(M) such that T ⊨ ¬ ϕ

❑ An automata-theoretic solution:

1. Build a tree automaton AExec(M) that accepts all trees in exec(M)

2. Build a tree automaton A¬φ that accepts all tree models of ¬φ

3. Check whether M⊨r φ by checking L(AExec(M)) ∩ L(A¬φ) = 

Aniello Murano - Module Checking 9

Finite-state complexity results

Class
Model Checking

(formula comp.)

Model Checking

(system comp.)

Module Checking

(formula complexity)

Module Checking

(system complexity)

LTL PSpace-Complete[4] NLogSpace [4] PSpace-Complete [5] NLogSpace [5]

CTL Linear Time [1] NLogSpace[3] ExpTime-Complete [5] PTime [5]

CTL* PSpace-Complete [2] NLogSpace[3] 2ExpTime-Complete [5] PTime [5]

1. [Clarke, Emerson, Sistla 1986]

2. [Emerson and Lei 1985]

3. [Kupferman, Vardi, Wolper 1994 & 2000]

4. [Sistla and Clarke 1985]

5. [Kupferman,Vardi,Wolper 1996 & 2001]

Aniello Murano - Module Checking 10

Module Checking Milestones

❑ Timeline:

◆ 1996-2001: CTL/CTL* two-players turn-based finite-state perfect information.

◆ 1997: mu-calculus two-players concurrent finite-state imperfect information

◆ 2002-2005: Abstraction refinement and implementation.

◆ 2005-2010: two-players turn-based infinite-state perfect information

◆ 2007-2013: two-players concurrent infinite-state imperfect information

◆ And a number of other extensions in the last decade…

Aniello Murano - Module Checking 11

Pushdown Module Checking
❑ Consider an open ATM machine with the constraint

“it is not possible to make more withdraws than Ads viewed”

❑ We need a stack to count how many Ads remain to be shown

Ad

Ad

Ad

G:
Welcome Choose

Withdraw

Show Ad

❑ A PD is a labeled transition graph augmented with a stack.

❑ (q,ξ) is a configuration if q is a node of G and ξ is a stack content

❑ An open PD (OPD) has environment and system configurations

❑ An OPD induces a Module M where nodes are Pushdown Configurations

PD Module Checking: decide whether M ⊨r φ
❑ For example: M ⊨r GF Show Ad but M ⊭rGF Withdraw

Aniello Murano - Module Checking 12

Pushdown Complexity Results

Class System PD Model Checking PD Module Checking

LTL finite-state Pspace-Complete PSpace-Complete

CTL finite-state Linear Time [1] EXPTime-Complete[3]

CTL* finite-state PSpace-Complete [2] 2EXPTime-Complete[3]

LTL Pushdown System Exptime-Complete Exptime-Complete

CTL Pushdown System EXPTime-Complete[4] 2EXPTime-Complete[5]

CTL* Pushdown System 2EXPTIME-Complete[4] 3EXPTime-Complete[5]

1. [Clarke, Emerson, Sistla 1986]

2. [Emerson and Lei 1985]

3. [Kupferman, Vardi, Wolper 2001]

4. [Walukiewicz 2000]

5. [Bozzelli, Murano, Peron, 2005-2010]

Exptime-Complete w.r.t the system (fixed formula)

Aniello Murano - Module Checking 13

(PD) Module Checking with Imperfect Information

❑ The environment does not see the full picture!

…but must act independently of the missing information…

❑ Not all the trees in EXEC(M) correspond to an actual environment .

❑ M reactively satisfies φ iff φ holds in all consistent (uniform) trees of Exec(M).

❑ Checking this consistency is the main difficulty here.

❑ [Aminof, Murano, Vardi] Using alternating state PD tree automata, we have proved

decidability if the imperfect information resides only in the control states.

M:

Welcome Choose

Withdraw

Show Ad

receipt y/n

receipt y/n receipt y/n

receipt y/n

❑ The environment can have imperfect information (hidden information) regarding the

(control) state and the stack content.

Aniello Murano - Module Checking 14

From Two Players to Multi Players

❑ In 1997, module checking “took” also another direction to deal with

multi-player concurrent games

Alternating-Time Temporal Logic

Aniello Murano - Module Checking 15

Alternating-Time Temporal Logic

❑ ATL generalizes CTL: temporal operators are indexed by coalitions of agents.

φ := true | p | φ ∧ φ | ¬φ | ≪A≫ψ ψ := X φ | φ U φ | φ R φ

❑ ≪A≫ ψ means that the team of agents A has a (collective) strategy to enforce ψ.

❑ ATL formulas are generally interpreted over Concurrent Game Structures

(CGS): a Kripke structure whose transitions are labeled with agents’ decisions.

❑ ATL is a story of success with several applications in MAS!

Aniello Murano - Module Checking 16

A (refuted) common belief

❑ Since its definition, there has been a common belief:

ATL(*) model checking subsumes CTL(*) module checking!!!

❑ In Murano and Jamroga AAMAS 2014 it has been showed that it is not the case!

◆ In module checking environment’s strategies are nondeterministic and irrevocable.

◆ In ATL(*) agents can only use deterministic and revocable strategies.

◆ ATL(*) model checking does not have the distinguishing and expressive power of CTL(*)

module checking

◆ To subsume CTL(*) module checking we have introduced the logic MNIATL(*)

.

Aniello Murano - Module Checking 17

ATL module checking

❑ In Murano and Jamroga - AAMAS 2015, finally a new framework that combines

and extends the features of the two methodologies has been introduced:

◆ The environment is a special agent acting as in classic module checking: it has

nondeterministic irrevocable strategies, possibly acting under imperfect information

◆ The other agents act as in classic ATL.

Aniello Murano - Module Checking 18

Conclusion
❑ Model checking has been conceived in the 1980s to check closed systems

◆ Model behavior determined by internal states.

◆ One source of nondeterminism: the unwinding returns an infinite computation tree

◆ Model checking amounts checking whether this unique tree satisfies the specification

❑ Module checking is a powerful method proposed in 1990s for open systems:

◆Open systems adapt their behavior to the input received from the environment

◆Two sources of nondeterminism: an additional external one from the environment

◆All possible interactions system-environment induce an infinite set of trees (Exec(M))

◆Module checking amounts checking whether all these trees satisfy the specification

❑ In the last 20 years, Module checking has been investigated in several settings:

◆ Turn-based/concurrent, perfect/imperfect information, finite/infinite state, etc. ☺

❑ Little work has been done on the connection with other methodologies in open

system verification and little investigation of its application in AI! ☺☺

Aniello Murano - Module Checking 19

19

References

❑ Kuperman, Vardi, Wolper. Module Checking. Information and Computation 2001. Vol 164(2): 322-344

❑ Kuperman, Vardi. Module Checking Revisited. CAV 1997, LNCS 1254, pages 36-47

❑ Bozzelli, Murano, Peron. Pushdown Module Checking. Formal Methods in System Design 2010. vol. 36 (1), 65-95

❑ Ferrante, Murano, Parente. Enriched μ-Calculi Module Checking. LOGICAL METHODS IN COMPUTER SCIENCE

2008. Vol. 4 (3:1), 1-21

❑ Ferrante, Murano. Enriched µ-Calculi Module Checking. FoSSaCS 2007: 183-197

❑ Ferrante, Murano, Parente. Enriched µ-Calculus Pushdown Module Checking. LPAR 2007: 438-453

❑ Aminof, Legay, Murano, Serre, Vardi. Pushdown Module Checking with Imperfect Information. Information and

Computation 2013. Vol. 223, 1-17

❑ Aminof, Murano, Vardi. Pushdown Module Checking with Imperfect Information. CONCUR 2007, 460-475

❑ Aminof, Legay, Murano, Serre. µ-calculus Pushdown Module Checking with Imperfect State Information. IFIP TCS

2008: 333-348

❑ Murano, Parente, Napoli. Program Complexity in Hierarchical Module Checking. LPAR 2008, LNCS 4330, 318-332

❑ Alur, Henzinger, Kupferman. Alternating-Time Temporal Logic. J. of ACM 2002. Vol 49(5): 672-713

❑ Ågotnes, Goranko, Jamroga. Alternating-Time Temporal Logics with Irrevocable Strategies. TARK 2007, 15-24

❑ Jamroga, Murano. On module checking and strategies. AAMAS 2014, pages 701-708

❑ Jamroga, Murano. Module Checking of Strategic Ability. AAMAS 2015, pages 227-235

❑ Jamroga, Murano. Module Checking for Uncertain Agents. PRIMA 2015, 232-247

